HOMOCLINIC POINTS AND ISOMORPHISM RIGIDITY OF ALGEBRAIC \mathbb{Z}^d -ACTIONS ON ZERO-DIMENSIONAL COMPACT ABELIAN GROUPS

RΥ

SIDDHARTHA BHATTACHARYA*

Department of Mathematics, Tata Institute of Fundamental Research
Bombay 400005, India
e-mail: siddhart@math.tifr.res.in

AND

KLAUS SCHMIDT

Mathematics Institute, University of Vienna Strudlhofgasse 4, A-1090 Vienna, Austria and

Erwin Schrödinger Institute for Mathematical Physics Boltzmanngasse 9, A-1090 Vienna, Austria e-mail: klaus.schmidt@univie.ac.at

ABSTRACT

Let d>1, and let α and β be mixing \mathbb{Z}^d -actions by automorphisms of zero-dimensional compact abelian groups X and Y, respectively. By analyzing the homoclinic groups of certain sub-actions of α and β we prove that, if the restriction of α to some subgroup $\Gamma\subset\mathbb{Z}^d$ of infinite index is expansive and has completely positive entropy, then every measurable factor map $\phi\colon (X,\alpha)\longrightarrow (Y,\beta)$ is almost everywhere equal to an affine map. The hypotheses of this result are automatically satisfied if the action α contains an expansive automorphism $\alpha^{\mathbf{n}},\mathbf{n}\in\mathbb{Z}^d$, or if α arises from a nonzero prime ideal in the ring of Laurent polynomials in d variables with coefficients in a finite prime field. Both these corollaries generalize the main theorem in [9]. In several examples we show that this kind of isomorphism rigidity breaks down if our hypotheses are weakened.

^{*} The first author would like to thank the FWF research project P14379-MAT for financial support and the Erwin Schrödinger Institute, Vienna, for hospitality while this work was done. Received March 4, 2002

1. Introduction

Throughout this paper the term **compact abelian group** will denote an infinite compact metrizable abelian group.

Let X be an additive compact abelian group with identity element 0_X , normalized Haar measure λ_X and additive dual group \widehat{X} . For every $x \in X$ and $a \in \widehat{X}$ we denote by $\langle a, x \rangle \in \mathbb{S} = \{z \in \mathbb{C} : |z| = 1\}$ the value of the character $a \in \widehat{X}$ at the point $x \in X$. An **algebraic action** α of a countable group Γ on X is a homomorphism $\alpha \colon \gamma \mapsto \alpha^{\gamma}$ from Γ into the group $\operatorname{Aut}(X)$ of continuous automorphisms of X. An algebraic Γ -action α on a compact abelian group X is **expansive** if there exists an open set $\mathcal{O} \subset X$ with

$$\bigcap_{\gamma \in \Gamma} \alpha^{\gamma}(\mathcal{O}) = \{0_X\},\,$$

and **mixing** if there exists, for all nonempty open subsets $\mathcal{O}_1, \mathcal{O}_2 \subset X$, a finite set $F \subset \Gamma$ with

$$\mathcal{O}_1 \cap \alpha^{\gamma}(\mathcal{O}_2) \neq \emptyset$$

for every $\gamma \in \Gamma \setminus F$.

Let α and β be algebraic Γ -actions on compact abelian groups X and Y, respectively. A Borel map $\phi: X \longrightarrow Y$ is **equivariant** if

(1.1)
$$\phi \circ \alpha^{\gamma} = \beta^{\gamma} \circ \phi \ \lambda_{X} \text{-a.e.}, \text{ for every } \gamma \in \Gamma.$$

A surjective equivariant Borel map $\phi: X \longrightarrow Y$ in (1.1) with $\lambda_Y = \lambda_X \phi^{-1}$ is called a **measurable factor map**

$$\phi \colon (X, \alpha) \longrightarrow (Y, \beta).$$

If there exists a measurable (or continuous) factor map $\phi: (X, \alpha) \longrightarrow (Y, \beta)$ then (Y, β) is a **measurable** (or **topological**) **factor** of (X, α) . If the factor map ϕ in (1.2) is a continuous surjective group homomorphism then (Y, β) is an **algebraic** factor of (X, α) and ϕ is an **algebraic factor map**. The actions α and β are **measurably, topologically** or **algebraically conjugate** if the map ϕ in (1.2) can be chosen to be a Borel isomorphism, a homeomorphism or a continuous group isomorphism (in which case ϕ is called a **measurable, topological** or **algebraic conjugacy** of (X, α) and (Y, β)).

A map $\psi: X \longrightarrow Y$ is **affine** if there exist a continuous group homomorphism $\psi': X \longrightarrow Y$ and an element $y \in Y$ with

$$\psi(x) = \psi'(x) + y$$

for every $x \in X$. If there exists an affine factor map $\psi: (X, \alpha) \longrightarrow (Y, \beta)$ then (Y, β) is obviously an algebraic factor of (X, α) .

For d=1, any algebraic \mathbb{Z} -action is determined by the powers of a single group automorphism α . If α is ergodic, then it is Bernoulli (cf., e.g., [1]), which implies that two such actions with equal entropy are measurably conjugate even if they are algebraically non-conjugate.

If d > 1 and α_1, α_2 are algebraic \mathbb{Z}^d -actions with completely positive entropy with respect to Haar measure, then they are Bernoulli by [11] and can thus again be measurably conjugate without being algebraically conjugate. However, if these actions are mixing with zero entropy, then measurable conjugacy implies — under certain additional conditions — not only algebraic conjugacy, but also that every measurable conjugacy between such actions is (almost everywhere equal to) an affine map. For irreducible and mixing algebraic \mathbb{Z}^d -actions with d > 1 this kind of strong isomorphism rigidity was proved in [8]–[9], and in [13] the (cautious) conjecture was formulated that **every** measurably conjugate pair of expansive and mixing zero-entropy algebraic \mathbb{Z}^d -actions with d > 1 is algebraically conjugate, and that every measurable conjugacy between such actions is affine.

In [2], the first author presented a counterexample to this conjecture: there exist two measurably conjugate expansive and mixing zero-entropy algebraic \mathbb{Z}^8 -actions α_1 and α_2 on non-isomorphic zero-dimensional compact abelian groups X_1 and X_2 , respectively. On the positive side it was shown in [3] that, for d > 1, every measurable conjugacy between expansive and mixing zero-entropy algebraic \mathbb{Z}^d -actions on zero-dimensional compact abelian groups is (almost everywhere equal to) a continuous map with certain additional algebraic properties.

In this paper we present further counterexamples to the rigidity conjecture in [13], including two measurably conjugate, but algebraically non-conjugate, expansive and mixing zero-entropy \mathbb{Z}^3 -actions on zero-dimensional compact abelian groups. However, if d > 1, and if α_1 and α_2 are mixing algebraic \mathbb{Z}^d -actions on zero-dimensional compact abelian groups X_1 and X_2 such that the restriction of α_1 to some subgroup $\Gamma \subset \mathbb{Z}^d$ of infinite index is expansive and has completely positive entropy, then every measurable factor map between α_1 and α_2 is affine (Theorem 4.1). Since this condition is automatically satisfied if α_1 is an expansive \mathbb{Z}^2 -action with zero entropy (or, more generally, if α_1 contains an expansive element $\alpha_1^{\mathbf{n}}$), all expansive and mixing zero-entropy algebraic \mathbb{Z}^2 -actions (or all mix-

¹ An algebraic \mathbb{Z}^d -action α on a compact abelian group X is **irreducible** if every closed α -invariant subgroup $Y \subsetneq X$ is finite.

ing algebraic \mathbb{Z}^d -actions containing an expansive element) on zero-dimensional compact abelian groups exhibit strong isomorphism rigidity (Corollary 4.2). In a second corollary (Corollary 4.3) we show that any measurable conjugacy between two mixing algebraic \mathbb{Z}^d -actions α_1 , α_2 arising from nonzero prime ideals in the ring $R_d^{(p)}$ of Laurent polynomials in d variables with coefficients in a finite prime field F_p via the construction (2.10)–(2.11) is affine.

The key tools for the proof of Theorem 4.1 are the continuity of measurable equivariant maps proved in [3] and a detailed investigation of the homoclinic groups of certain sub-actions of the \mathbb{Z}^d -actions α_1 and α_2 in Proposition 3.5.

In [5] Manfred Einsiedler has recently given a proof of Theorem 4.1 by a different method based on relative entropy considerations in the sense of [7].

2. Algebraic \mathbb{Z}^d -actions on zero-dimensional groups

Let α be an algebraic Γ -action on a compact abelian group X. For every subgroup $\Gamma' \subset \Gamma$ we denote by $\alpha^{\Gamma'}$ the restriction of α to Γ' . If $Z \subset X$ is a closed α -invariant subgroup we write α_Z and $\alpha_{X/Z}$ for the algebraic \mathbb{Z}^d -actions induced by α on Z and X/Z, respectively.

We denote by $R_d = \mathbb{Z}[u_1^{\pm 1}, \dots, u_d^{\pm 1}]$ the ring of Laurent polynomials with integral coefficients in the variables u_1, \dots, u_d and write the elements $f \in R_d$ as

$$(2.1) f = \sum_{\mathbf{n} \in \mathbb{Z}^d} f_{\mathbf{n}} u^{\mathbf{n}}$$

with $u^{\mathbf{n}} = u_1^{n_1} \cdots u_d^{n_d}$ and $f_{\mathbf{n}} \in \mathbb{Z}$ for all $\mathbf{n} = (n_1, \dots, n_d) \in \mathbb{Z}^d$, where $f_{\mathbf{n}} = 0$ for all but finitely many $\mathbf{n} \in \mathbb{Z}^d$.

If α is an algebraic \mathbb{Z}^d -action on a compact abelian group X, then the additively-written dual group $M=\widehat{X}$ is a module over the ring R_d with respect to the operation

(2.2)
$$f \cdot a = f(\widehat{\alpha})(a) = \sum_{\mathbf{n} \in \mathbb{Z}^d} f_{\mathbf{n}} \widehat{\alpha^{\mathbf{n}}}(a)$$

for $f \in R_d$ and $a \in M$, where $\widehat{\alpha^n}$ denotes the automorphism of \widehat{X} dual to α^n . The module $M = \widehat{X}$ is called the **dual module** of α .

Conversely, if M is a module over R_d , then we obtain an algebraic \mathbb{Z}^d -action α_M on $X_M = \widehat{M}$ by setting

(2.3)
$$\widehat{\alpha_M^{\mathbf{n}}}(a) = u^{\mathbf{n}} \cdot a$$

for every $\mathbf{n} \in \mathbb{Z}^d$ and $a \in M$. Clearly, M is the dual module of α_M .

Let α be an algebraic \mathbb{Z}^d -action on a compact abelian group X with dual module $M = \widehat{X}$. For every $f = \sum_{\mathbf{n} \in \mathbb{Z}^d} f_{\mathbf{n}} u^{\mathbf{n}} \in R_d$ we define a continuous group homomorphism $f(\alpha) \colon X \longrightarrow X$ by setting, for every $x \in X$,

(2.4)
$$f(\alpha)(x) = \sum_{\mathbf{n} \in \mathbb{Z}^d} f_{\mathbf{n}} \alpha^{\mathbf{n}} x.$$

Note that $f(\alpha)$ is dual to multiplication by f on $M = \widehat{X}$ (or, equivalently, that $\widehat{f(\alpha)} = f(\widehat{\alpha})$ in (2.2)). Hence $f(\alpha)$ is surjective if and only if f does not lie in any prime ideal associated² with M. For details we refer to [12].

In this paper we restrict our attention to algebraic \mathbb{Z}^d -actions on zero-dimensional compact abelian groups. We recall the following results (cf. [12, Propositions 6.6 and 6.9]).

LEMMA 2.1: Let α be an algebraic \mathbb{Z}^d -action on a compact abelian group X. Then the group X is zero-dimensional if and only if every prime ideal \mathfrak{p} associated with the dual module $M = \widehat{X}$ of α contains a rational prime constant $p(\mathfrak{p}) > 1$.

LEMMA 2.2: Let α be an algebraic \mathbb{Z}^d -action on a zero-dimensional compact abelian group X with dual module $M = \hat{X}$.

- (1) The following conditions are equivalent.
 - (a) α is expansive;
 - (b) the module M is Noetherian.
- (2) The following conditions are equivalent.
 - (a) α_M is mixing;
 - (b) $\alpha_{R_d/\mathfrak{p}}$ is mixing for every $\mathfrak{p} \in \mathrm{Asc}(M)$;
 - (c) $\mathfrak{p} \cap \{u^{\mathbf{n}} 1: 0 \neq \mathbf{n} \in \mathbb{Z}^d\} = \emptyset$ for every $\mathfrak{p} \in \mathrm{Asc}(M)$.
- (3) The following conditions are equivalent.
 - (a) α_M has positive entropy (with respect to the normalized Haar measure λ_X of X);
 - (b) $\alpha_{R_d/\mathfrak{p}}$ has positive entropy for some $\mathfrak{p} \in \mathrm{Asc}(M)$;
 - (c) some $\mathfrak{p} \in \mathrm{Asc}(M)$ is principal (and hence of the form $\mathfrak{p} = (p) = pR_d$ for some rational prime constant p > 1).
- (4) The following conditions are equivalent.
 - (a) α_M has completely positive entropy (with respect to λ_X);

² A prime ideal $\mathfrak{p} \subset R_d$ is associated with an R_d -module M if $\mathfrak{p} = \operatorname{ann}(a) = \{f \in R_d \colon f \cdot a = 0_M\}$ for some $a \in M$, and the module M is associated with a prime ideal $\mathfrak{p} \subset R_d$ if \mathfrak{p} is the only prime ideal associated with M. The set of prime ideals associated with a Noetherian R_d -module M is finite and denoted by $\operatorname{Asc}(M)$.

- (b) $\alpha_{R_d/\mathfrak{p}}$ has positive entropy for every $\mathfrak{p} \in \mathrm{Asc}(M)$;
- (c) every $\mathfrak{p} \in \mathrm{Asc}(M)$ of the form $\mathfrak{p} = (p) = pR_d$ for some rational prime constant $p = p(\mathfrak{p}) > 1$.

LEMMA 2.3: Let α be an expansive algebraic \mathbb{Z}^d -action on a zero-dimensional compact abelian group X with dual module $M = \widehat{X}$. If $Asc(M) = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_m\}$, then there exist Noetherian R_d -modules $N \supseteq M \supseteq N'$ with the following properties.

- (1) $N = N^{(1)} \oplus \cdots \oplus N^{(m)}$, where each of the modules $N^{(j)}$ has a finite sequence of submodules $N^{(j)} = N_{s_j}^{(j)} \supset \cdots \supset N_0^{(j)} = \{0\}$ with $N_k^{(j)}/N_{k-1}^{(j)} \cong R_d/\mathfrak{p}_j$ for $k = 1, \ldots, s_j$;
- (2) N and N' are isomorphic as R_d -modules.

In view of the Lemmas 2.1–2.3 it is useful to have an explicit realization of \mathbb{Z}^d -actions of the form $\alpha_{R_d/\mathfrak{p}}$, where $\mathfrak{p} \subset R_d$ is a prime ideal containing a rational prime constant p > 1.

Denote by $R_d^{(p)} = F_p[u_1^{\pm 1}, \dots, u_d^{\pm 1}]$ the ring of Laurent polynomials in the variables u_1, \dots, u_d with coefficients in the prime field $F_p = \mathbb{Z}/p\mathbb{Z}$ and define a ring homomorphism $f \mapsto f_{/p}$ from R_d to $R_d^{(p)}$ by reducing each coefficient of f modulo p. As in (2.1) we write every $h \in R_d^{(p)}$ as $h = \sum_{\mathbf{n} \in \mathbb{Z}^d} h_{\mathbf{n}} u^{\mathbf{n}}$ with $h_{\mathbf{n}} \in F_p$ for every $\mathbf{n} \in \mathbb{Z}^d$. The set

(2.5)
$$S(h) = \{ \mathbf{n} \in \mathbb{Z}^d : c_h(\mathbf{n}) \neq 0 \}$$

is called the **support** of $h \in R_d^{(p)}$.

If $\mathfrak{p} \subset R_d$ is a prime ideal containing the constant p, then

is again a prime ideal, and the map $f\mapsto f_{/p}$ induces an R_d -module isomorphism

$$(2.7) R_p/\mathfrak{p} \cong R_d^{(p)}/\overline{\mathfrak{p}}.$$

Let $\Omega = F_p^{\mathbb{Z}^d}$, furnished with the product topology and component-wise addition. We write every $\omega \in \Omega$ as $\omega = (\omega_{\mathbf{n}})$ with $\omega_{\mathbf{n}} \in F_p$ for every $\mathbf{n} \in \mathbb{Z}^d$ and define the shift-action σ of \mathbb{Z}^d on Ω by

$$(2.8) (\sigma^{\mathbf{m}}\omega)_{\mathbf{n}} = \omega_{\mathbf{m}+\mathbf{n}}$$

for every $\mathbf{m} \in \mathbb{Z}^d$ and $\omega = (\omega_{\mathbf{n}}) \in \Omega$. For every $h = \sum_{\mathbf{n} \in \mathbb{Z}^d} h_{\mathbf{n}} u^{\mathbf{n}} \in R_d^{(p)}$ we define a continuous group homomorphism $h(\sigma): \Omega \longrightarrow \Omega$ as in (2.4) by

$$h(\sigma) = \sum_{\mathbf{n} \in \mathbb{Z}^d} h_{\mathbf{n}} \sigma^{\mathbf{n}}.$$

The additive group $R_d^{(p)}$ can be identified with the dual group $\widehat{\Omega}$ of Ω by setting

(2.9)
$$\langle h, \omega \rangle = e^{2\pi i (\sum_{\mathbf{n} \in \mathbb{Z}^d} h_{\mathbf{n}} \omega_{\mathbf{n}})/p}$$

for every $h \in R_d^{(p)}$ and $\omega \in \Omega$. With this identification the shift $\sigma^{\mathbf{m}} \colon \Omega \longrightarrow \Omega$ is dual to multiplication by $u^{\mathbf{m}}$ on $\widehat{\Omega} = R_d^{(p)}$, and $h(\sigma)$ is dual to multiplication by h on $R_d^{(p)}$ for every $h \in R_d^{(p)}$.

If $\mathfrak{q} \subset R_d^{(p)}$ is an ideal with generators $\{h^{(1)}, \ldots, h^{(k)}\}$, then

(2.10)
$$\mathfrak{q}^{\perp} = \widehat{R_d^{(p)}/\mathfrak{q}} = X_{R_d^{(p)}/\mathfrak{q}} = \{\omega \in \Omega : \langle h, \omega \rangle = 1 \text{ for every } h \in \mathfrak{q} \}$$
$$= \bigcap_{h \in \mathfrak{q}} \ker(h(\sigma)) = \bigcap_{i=1}^k \ker(h^{(i)}(\sigma))$$

is a closed, shift-invariant subgroup of Ω , and

$$\alpha_{R_d^{(p)}/\mathfrak{q}} = \sigma_{X_{R_d^{(p)}/\mathfrak{q}}}$$

is the restriction of the shift-action σ to $X_{R_{\perp}^{(p)}/\mathfrak{q}} \subset \Omega$.

We will use the following result from [3] on measurable equivariant maps between algebraic \mathbb{Z}^d -actions on zero-dimensional groups (cf. [3, Corollary 1.2]).

LEMMA 2.4: Let d > 1, and let α and β be mixing zero-entropy algebraic \mathbb{Z}^d -actions on compact abelian groups X and Y, respectively. Then there exists, for every measurable \mathbb{Z}^d -equivariant map $\phi: (X, \alpha) \longrightarrow (Y, \beta)$, a continuous \mathbb{Z}^d -equivariant map $\phi': (X, \alpha) \longrightarrow (Y, \beta)$ such that $\phi = \phi' \lambda_X$ -a.e.

3. Homoclinic points

Definition 3.1: Let α be an algebraic \mathbb{Z}^d -action on a compact abelian group X, and let $\Gamma \subset \mathbb{Z}^d$ be a subgroup. An element $x \in X$ is (α, Γ) -homoclinic (to the identity element 0_X of X), if

$$\lim_{\substack{\mathbf{n}\to\infty\\\mathbf{n}\in\Gamma}}\alpha^{\mathbf{n}}x=0_X.$$

The α -invariant subgroup $\Delta_{(\alpha,\Gamma)}(X) \subset X$ of all (α,Γ) -homoclinic points is an R_d -module under the operation

$$f \cdot x = f(\alpha)(x)$$

for every $f \in R_d$ and $x \in \Delta_{(\alpha,\Gamma)}(X)$ (cf. (2.4)), and is called the Γ -homoclinic module of α (cf. [10]).

PROPOSITION 3.2: Let α be an expansive algebraic \mathbb{Z}^d -action on a compact abelian group X, and let $\Gamma \subset \mathbb{Z}^d$ be a subgroup. Then $\Delta_{(\alpha,\Gamma)} \neq \{0_X\}$ if and only if the entropy $h(\alpha^{\Gamma})$ of the algebraic Γ -action α^{Γ} on X is positive, and $\Delta_{(\alpha,\Gamma)}$ is dense in X if and only if α^{Γ} has completely positive entropy (where entropy is always taken with respect to Haar measure).

Proof: This is [10, Theorems 4.1 and 4.2].

If an expansive and mixing algebraic \mathbb{Z}^d -action α on a compact abelian group X has zero entropy, then the homoclinic group $\Delta_{\alpha}(X)$ of this \mathbb{Z}^d -action is trivial by Proposition 3.2, but $\Delta_{(\alpha,\Gamma)}$ will be dense in X for appropriate subgroups $\Gamma \subset \mathbb{Z}^d$. We investigate this phenomenon in the special case where p>1 is a rational prime, $f \in R_d^{(p)}$ an irreducible Laurent polynomial such that the convex hull $\mathfrak{C}(f) \subset \mathbb{R}^d$ of the support $\mathfrak{S}(f) \subset \mathbb{Z}^d$ of f contains an interior point (cf. (2.5)), and where $\alpha = \alpha_{R_d^{(p)}/(f)}$ is the shift-action of \mathbb{Z}^d on the compact abelian group $X = X_{R_d^{(p)}/(f)} \subset F_p^{\mathbb{Z}^d}$ defined in (2.10)–(2.11).

We write [.,.] and $\|\cdot\|$ for the Euclidean inner product and norm on \mathbb{R}^d and set, for every nonzero element $\mathbf{m} \in \mathbb{Z}^d$,

(3.1)
$$\Gamma_{\mathbf{m}} = \{ \mathbf{n} \in \mathbb{Z}^d : [\mathbf{m}, \mathbf{n}] = 0 \}.$$

Let

$$S_{d-1} = \{ \mathbf{v} \in \mathbb{R}^d : ||\mathbf{v}|| = 1 \}$$

be the unit sphere in \mathbb{R}^d and put, for every $\mathbf{v} \in \mathsf{S}_{d-1}$,

$$\begin{split} H_{\mathbf{v}} &= \{\mathbf{w} \in \mathbb{Z}^d \colon [\mathbf{v}, \mathbf{w}] \leq 0\}, \\ X_{\mathbf{v}} &= \{x \in X \colon x_{\mathbf{n}} = 0 \text{ for every } \mathbf{n} \in H_{\mathbf{v}}\}. \end{split}$$

Following [6] we observe that the set

$$\mathsf{N}(\alpha) = \{ \mathbf{v} \in \mathsf{S}_{d-1} \colon X_{\mathbf{v}} \neq \{0_X\} \}$$

consists of all $\mathbf{v} \in S_{d-1}$ such that

$$\{\mathbf{w} \in \mathcal{C}(f): [\mathbf{w}, \mathbf{v}] = \max_{\mathbf{w}' \in \mathcal{C}(f)} [\mathbf{w}', \mathbf{v}]\}$$

contains a (one-dimensional) edge of $\mathcal{C}(f)$ (recall that $\mathcal{C}(f) \subset \mathbb{R}^d$ is the convex hull of the support of f in (2.5)). The complement

$$\mathsf{E}(\alpha) = \mathsf{S}_{d-1} \setminus \mathsf{N}(\alpha)$$

of $\mathsf{N}(\alpha)$ is dense, open, and consists of finitely many connected components. Hence the set

$$(3.3) \mathsf{E}^*(\alpha) = \mathsf{E}(\alpha) \cap (-\mathsf{E}(\alpha)) = \mathsf{S}_{d-1} \setminus (\mathsf{N}(\alpha) \cup (-\mathsf{N}(\alpha)))$$

is again dense, open, and has finitely many connected components, called the **Weyl chambers** of α . For every nonzero $\mathbf{m} \in \mathbb{Z}^d$ with

(3.4)
$$\mathbf{m}^* = \frac{\mathbf{m}}{\|\mathbf{m}\|} \in \mathsf{E}^*(\alpha)$$

we denote by $W(\mathbf{m})$ the connected component of $\mathsf{E}(\alpha)$ containing \mathbf{m}^* and write $W^*(\mathbf{m}) = W(\mathbf{m}) \cap W(-\mathbf{m})$ for the Weyl chamber of $\mathsf{E}^*(\alpha)$ containing \mathbf{m}^* . In this notation we have the following lemma.

LEMMA 3.3: Let $f \in R_d^{(p)}$ be an irreducible Laurent polynomial such that the convex hull $\mathfrak{C}(f) \subset \mathbb{R}^d$ of the support $\mathfrak{S}(f) \subset \mathbb{Z}^d$ of f contains an interior point, and let $\alpha = \alpha_{R_d^{(p)}/(f)}$ be the shift-action of \mathbb{Z}^d on the compact abelian group $X = X_{R_d^{(p)}/(f)} \subset F_p^{\mathbb{Z}^d}$ defined in (2.10)–(2.11).

- (1) For every nonzero element $\mathbf{m} \in \mathbb{Z}^d$, the action $\alpha^{\Gamma_{\mathbf{m}}}$ is expansive if and only if \mathbf{m} satisfies (3.4).
- (2) If m satisfies (3.4) then $\Delta_{(\alpha,\Gamma_{\mathbf{m}})}$ is dense in X and there exists a fundamental homoclinic point $x^{\Delta} \in \Delta_{(\alpha,\Gamma_{\mathbf{m}})}$ such that

(3.5)
$$\{h(\alpha)(x^{\Delta}): h \in R_d^{(p)}\} = \Delta_{(\alpha, \Gamma_{\mathbf{m}})}$$

and

(3.6)
$$h(\alpha)(x^{\Delta}) = 0_X \quad \text{if and only if } h \in (f).$$

(3) If $\mathbf{n} \in \mathbb{Z}^d$ is a second nonzero element satisfying (3.4), then

$$\Delta_{(\alpha,\Gamma_{\mathbf{m}})} = \Delta_{(\alpha,\Gamma_{\mathbf{n}})}$$

whenever $W^*(\mathbf{m}) = W^*(\mathbf{n})$.

Proof: The assertion (1) follows from [4], [6] or an elementary direct argument. In order to prove the existence of a fundamental homoclinic point x^{Δ} in (2) we choose an element $\mathbf{m}' \in \mathbb{Z}^d$ with $\mathbb{Z}^d = \Gamma_{\mathbf{m}} + \{k\mathbf{m}': k \in \mathbb{Z}\}$ and write f as $f = \sum_{k=k_1}^{k_2} u^{k\mathbf{m}'} g^{(k)}$ for appropriate integers $k_1 < k_2$, where $S(g^{(k)}) \subset \Gamma_{\mathbf{m}}$ for every $k = k_1, \ldots, k_2$, and where $g^{(k_1)}$ and $g^{(k_2)}$ each have a single nonzero entry. As $X = \ker(f(\sigma))$ by (2.10), every $x \in X$ is determined completely by its

coordinates in the subset $S = \Gamma_{\mathbf{m}} + \{k_1 \mathbf{m}', \dots, (k_2 - 1) \mathbf{m}'\} \subset \mathbb{Z}^d$; furthermore, the projection $\pi_S \colon X \longrightarrow F_p^S$ onto the coordinates in S is bijective and

$$\Delta_{(\alpha,\Gamma_{\mathbf{m}})} = \{x = (x_{\mathbf{k}}) \in X \colon x_{\mathbf{k}} \neq 0 \text{ for only finitely many } \mathbf{k} \in S\}.$$

The point $x^{\Delta} \in X$ with $x^{\Delta}_{k_1 \mathbf{m}'} = 1$ and $x^{\Delta}_{\mathbf{k}} = 0$ for every $\mathbf{k} \in S \setminus \{k_1 \mathbf{m}'\}$ will satisfy (3.5)–(3.6). Note that we have proved in passing that $\alpha^{\Gamma_{\mathbf{m}}}$ is the shift-action of $\Gamma_{\mathbf{m}}$ on $A^{\Gamma_{\mathbf{m}}}$ for some finite abelian group A, and that $\Delta_{(\alpha,\Gamma_{\mathbf{m}})}$ is dense in X.

For (3) we consider the convex cone

$$C'(\mathbf{m}) = \{ \mathbf{v} \in \mathbb{R}^d \setminus \{\mathbf{0}\} : \mathbf{v}^* \in W(\mathbf{m}) \}$$

with dual cone

(3.7)
$$C(\mathbf{m}) = \{ \mathbf{w} \in \mathbb{R}^d : [\mathbf{w}, \mathbf{v}] \le 0 \text{ for every } \mathbf{v} \in C'(\mathbf{m}) \}.$$

If $l \in \mathcal{C}(f)$ is the unique vertex with

$$[\mathbf{l}, \mathbf{m}] = \max\{[\mathbf{k}, \mathbf{m}] : \mathbf{k} \in \mathcal{S}(f)\},\$$

then $C(\mathbf{m})$ is the smallest cone in \mathbb{R}^d containing $S(f) - \mathbf{l} = S(u^{-1}f)$. Furthermore, if $\mathbf{n} \in \mathbb{Z}^d \setminus \{\mathbf{0}\}$ and $\mathbf{n}^* \in \mathsf{E}^*(\alpha)$, then

(3.8)
$$C(\mathbf{m}) = C(\mathbf{n})$$
 if and only if $W(\mathbf{m}) = W(\mathbf{n})$

(cf. (3.7)), but the interiors of $C(\mathbf{m})$ and $C(\mathbf{n})$ may obviously have nonempty intersection even if $W(\mathbf{m}) \neq W(\mathbf{n})$.

For every homoclinic point $x \in \Delta_{(\alpha,\Gamma_{\mathbf{m}})}(X)$ we set

$$S(x) = \{ \mathbf{n} \in \mathbb{Z}^d : x_{\mathbf{n}} \neq 0 \}$$

and note that there exist elements $\mathbf{k}^{\pm} \in \mathbb{Z}^d$ with

(3.9)
$$S(x) \subset (\mathbf{k}^+ - C(\mathbf{m})) \cup (\mathbf{k}^- - C(-\mathbf{m})).$$

This shows that x is homoclinic for every $\alpha^{\Gamma_{\mathbf{n}}}$ with $\mathbf{n}^* \in W^*(\mathbf{m})$. Since $x \in \Delta_{(\alpha,\Gamma_{\mathbf{m}})}(X)$ was arbitrary, and since the situation is symmetric in \mathbf{m} and \mathbf{n} , this proves (3).

LEMMA 3.4: Let d>1, p>1 a rational prime, and let $f\in R_d^{(p)}$ be an irreducible Laurent polynomial such that the convex hull $\mathfrak{C}(f)\subset\mathbb{R}^d$ of the support $\mathfrak{S}(f)\subset\mathbb{Z}^d$ contains an interior point. Let $\alpha=\alpha_{R_d^{(p)}/(f)}$ be the shift-action of \mathbb{Z}^d on the compact abelian group $X=X_{R_d^{(p)}/(f)}\subset F_p^{\mathbb{Z}^d}$ defined in (2.10)–(2.11), and let $z\in X$ be a point with the following property: there exist an integer $k\geq 1$ and elements $\mathbf{n}_i, i=1,\ldots k$, in $\mathbb{Z}^d\smallsetminus\{\mathbf{0}\}$ such that

(3.10)
$$S(z) = \{ \mathbf{n} \in \mathbb{Z}^d : z_{\mathbf{n}} \neq 0 \} \subset \left(\bigcup_{i=1}^k \Gamma_{\mathbf{n}_i} \right) + Q(N)$$

for some integer $N \geq 0$, where

$$(3.11) Q(M) = \{-M, \dots, M\}^d \subset \mathbb{Z}^d$$

for every $M \geq 0$. Then there exists a Laurent polynomial $g \in R_d^{(p)} \setminus (f)$ with $g(\alpha)(z) = 0_X$.

Proof: We write f in the form (2.1), assume without loss in generality (by multiplying f by a monomial $u^{\mathbf{k}}$, if necessary) that

$$S = S(f) \cap \Gamma_{\mathbf{n}_k} \neq \emptyset$$

and set

$$h_k = \sum_{\mathbf{n} \in \Gamma_{\mathbf{n}}} f_{\mathbf{n}} u^{\mathbf{n}}.$$

Since the convex hull of the support of h_k has no interior point, $h_k \notin (f)$.

Choose $M \geq 1$ with $S(f) \subset Q(M)$ (cf. (3.11)), and let $r \geq 1$ be an integer with $p^r > 2dN$. For every $\mathbf{k} \in \mathbb{Z}^d$ with

$$\mathbf{k} \notin \left(\bigcup_{i=1}^{k-1} \Gamma_{\mathbf{n}_i}\right) + Q(p^r M + N),$$

the support of the Laurent polynomial $u^{\mathbf{k}}f^{p^r}$ does not intersect

$$\left(\bigcup_{i=1}^{k-1} \Gamma_{\mathbf{n}_i}\right) + Q(N).$$

Furthermore, if

$$\mathbb{S}(u^{\mathbf{k}}h_{k}^{p^{r}})\cap(\Gamma_{\mathbf{n}_{k}}+Q(N))=\mathbb{S}(u^{\mathbf{k}}h_{k}^{p^{r}})\cap\left[\left(\bigcup_{i=1}^{k}\Gamma_{\mathbf{n}_{i}}\right)+Q(N)\right]\neq\emptyset,$$

then

(3.12)
$$S(u^{\mathbf{k}}f^{p^r}) \cap (\Gamma_{\mathbf{n}_k} + Q(N)) = S(u^{\mathbf{k}}h_k^{p^r}) \cap \left[\left(\bigcup_{i=1}^k \Gamma_{\mathbf{n}_i} \right) + Q(N) \right]$$
$$= S(u^{\mathbf{k}}h_k^{p^r}) \cap (\Gamma_{\mathbf{n}_k} + Q(N)).$$

According to the definition of X in (2.11), $f^{pM}(\alpha)(z) = 0_X$, and hence

$$0 = f^{p^r}(\alpha)(z)_{-\mathbf{k}} = (u^{\mathbf{k}} f^{p^r})(\alpha)(z)_{\mathbf{0}} = \sum_{\mathbf{n} \in \mathbb{S}(f)} f_{\mathbf{n}} z_{\mathbf{k}+p^r \mathbf{n}}$$

$$\stackrel{*}{=} \sum_{\mathbf{n} \in \mathbb{S}(h_k)} f_{\mathbf{n}} z_{\mathbf{k}+p^r \mathbf{n}} = (u^{\mathbf{k}} h_k^{p^r})(\alpha)(z)_{\mathbf{0}} = h_k^{p^r}(\alpha)(z)_{-\mathbf{k}},$$

where the identity marked $\stackrel{*}{=}$ follows from (3.12). The Laurent polynomial $h'_k = h_k^{p^r} \notin (f)$ thus has the property that

$$\mathbb{S}(h_k'(\alpha)(z)) \subset \bigg(\bigcup_{i=1}^{k-1} \Gamma_{\mathbf{n}_i}\bigg) + Q(N')$$

for some integer $N' \geq 1$.

We repeat the argument with k, z and N replaced by $k-1, h'_k(\alpha)(z)$ and N', respectively. After k steps we obtain Laurent polynomials h'_1, \ldots, h'_k in $R_d^{(p)}$ such that $g = \prod_{i=1}^k h'_i \notin (f)$ and $\mathbb{S}(g(\alpha)(z))$ is finite. In other words, the point $g(\alpha)(z)$ is homoclinic and hence, since α has entropy zero, equal to 0_X by Proposition 3.2.

Now we can state the main results of this section.

PROPOSITION 3.5: Let $f \in R_d^{(p)}$ be an irreducible Laurent polynomial such that the convex hull $\mathcal{C}(f) \subset \mathbb{R}^d$ of the support $\mathcal{S}(f) \subset \mathbb{Z}^d$ of f contains an interior point, and let $\alpha = \alpha_{R_d^{(p)}/(f)}$ be the shift-action of \mathbb{Z}^d on the compact abelian group $X = X_{R_d^{(p)}/(f)} \subset F_p^{\mathbb{Z}^d}$ defined in (2.10)-(2.11). Then there exists, for every Weyl chamber W_1^* of α , a Weyl chamber W_2^* of α such that the following properties are satisfied for all nonzero $\mathbf{m}, \mathbf{n} \in \mathbb{Z}^d$ with $\mathbf{m}^* \in W_1^*$ and $\mathbf{n}^* \in W_2^*$.

- (1) The homoclinic groups $\Delta_{(\alpha,\Gamma_{\mathbf{m}})}(X)$ and $\Delta_{(\alpha,\Gamma_{\mathbf{n}})}(X)$ are dense in X;
- (2) $\Delta_{(\alpha,\Gamma_{\mathbf{m}})}(X) \cap \Delta_{(\alpha,\Gamma_{\mathbf{n}})}(X) = \{0_X\}.$

Proof: We fix a nonzero element $\mathbf{m} \in \mathbb{Z}^d$ with $\mathbf{m}^* \in W_1^*$. Then the homoclinic group $\Delta_{(\alpha,\Gamma_{\mathbf{m}})}$ is dense in X and isomorphic to $R_d^{(p)}/(f)$ by Lemma 3.3.

Suppose that $\Delta_{(\alpha,\Gamma_{\mathbf{m}})} \cap \Delta_{(\alpha,\Gamma_{\mathbf{n}})} \neq \{0_X\}$ for every nonzero $\mathbf{n} \in \mathbb{Z}^d$ satisfying (3.4) (with \mathbf{n} replacing \mathbf{m}). Under this hypothesis we shall prove the existence

of a Laurent polynomial $g \in R_d^{(p)} \setminus (f)$ such that $g(\alpha)(X) = \{0_X\}$. By duality, $(g) = gR_d^{(p)} \subset (f)$, and this contradiction will prove the proposition.

In order to construct such a Laurent polynomial g we choose an enumeration W_1^*, \ldots, W_k^* of the Weyl chambers of α , set $\mathbf{n}_1 = \mathbf{m}$, and choose elements $\mathbf{n}_i \in \mathbb{Z}^d \setminus \{\mathbf{0}\}$ such that $\mathbf{n}_i^* \in W_i^*$ for $i = 2, \ldots, k$. By hypothesis, $\Delta_{(\alpha, \Gamma_{\mathbf{m}})} \cap \Delta_{(\alpha, \Gamma_{\mathbf{n}_i})} \neq \{0_X\}$ for $i = 2, \ldots, k$, and (3.5) - (3.6) allows us to find Laurent polynomials $h^{(i)} \in R_d^{(p)} \setminus (f)$ with $h^{(i)}(\alpha)(x^{\Delta}) \in \Delta_{(\alpha, \Gamma_{\mathbf{n}_i})} \setminus \{0_X\}$ for $i = 2, \ldots, k$. The Laurent polynomial $h = \prod_{i=2}^k h^{(i)} \in R_d^{(p)} \setminus (f)$ has the property that

(3.13)
$$0_X \neq y^{\Delta} = h(\alpha)(x^{\Delta}) \in \Delta_{(\alpha, \Gamma_{\mathbf{n}_i})}$$

for $i=1,\ldots,m$. It follows that $y^{\Delta} \in \Delta_{(\alpha,\Gamma_n)}$ and hence that

(3.14)
$$\lim_{\substack{\mathbf{k} \to \infty \\ \mathbf{k} \in \Gamma_{\mathbf{n}}}} \alpha^{\mathbf{k}} y^{\Delta} = 0_X$$

for every nonzero $\mathbf{n} \in \mathbb{Z}^d$ for which $\alpha^{\Gamma_{\mathbf{n}}}$ is expansive.

From (3.9) we conclude that there exist elements $\mathbf{k}_i^{\pm} \in \mathbb{Z}^d, i = 1, \dots, k$, with

(3.15)
$$S(y^{\Delta}) \subset \bigcap_{i=1}^{k} ((\mathbf{k}_{i}^{+} - C(\mathbf{n}_{i})) \cup (\mathbf{k}_{i}^{-} - C(-\mathbf{n}_{i}))).$$

We write $\mathcal{F}(f)$ for the set of ((d-1)-dimensional) faces of the convex polyhedron $\mathcal{C}(f)$, choose, for every face $F \in \mathcal{F}(f)$, an element $\mathbf{v}_F \in \mathsf{N}(\alpha)$ orthogonal to F, and set

$$\Gamma(F) = \Gamma_{\mathbf{v}_F}$$

as in (3.1). From (3.15) and the definition of $X=X_{R_d^{(p)}/(f)}$ in (2.10) we conclude that that there exists an integer $N\geq 0$ with

(3.16)
$$S(y^{\Delta}) \subset \left(\bigcup_{F \in \mathcal{F}(f)} \Gamma(F)\right) + Q(N).$$

Lemma (3.4) implies the existence of a Laurent polynomial $g \in R_d^{(p)} \setminus (f)$ with

$$g(\alpha)(y^{\Delta}) = (gh)(\alpha)(x^{\Delta}) = 0_X.$$

As explained above, this completes the proof of the proposition.

PROPOSITION 3.6: Let d > 1, p > 1 a rational prime, $f \in R_d^{(p)}$ an irreducible Laurent polynomial such that the shift-action $\alpha = \alpha_{R_d^{(p)}/(f)}$ of \mathbb{Z}^d on the compact

abelian group $X = X_{R_d^{(p)}/(f)} \subset F_p^{\mathbb{Z}^d}$ in (2.10)-(2.11) is mixing, and let $\mathbf{m} \subset \mathbb{Z}^d$ be a nonzero element such that the restriction $\alpha^{\Gamma_{\mathbf{m}}}$ of α to the subgroup $\Gamma_{\mathbf{m}}$ in (3.1) is expansive. Then the homoclinic group $\Delta_{(\alpha,\Gamma_{\mathbf{m}})}(X)$ is dense in X. Furthermore, there exists an open subset $W \subset \mathsf{S}_{d-1}$ such that every nonzero element $\mathbf{n} \in \mathbb{Z}^d$ with $\mathbf{n}^* \in \mathsf{S}_{d-1}$ has the following properties.

- (1) $\Delta_{(\alpha,\Gamma_n)}(X)$ is dense in X;
- (2) $\Delta_{(\alpha,\Gamma_{\mathbf{m}})}(X) \cap \Delta_{(\alpha,\Gamma_{\mathbf{n}})}(X) = \{0_X\}.$

Proof: If the convex hull $\mathcal{C}(f) \subset \mathbb{R}^d$ of the support $\mathcal{S}(f) \subset \mathbb{Z}^d$ of f contains an interior point then Proposition 3.6 is essentially a re-statement of Proposition 3.5.

If $\mathfrak{C}(f)$ does not contain an interior point, then we may assume without loss in generality (after multiplying f by a monomial $u^{\mathbf{m}}$, if necessary) that $\mathfrak{S}(f)$ is contained in some subspace $V \subset \mathbb{R}^d$ of dimension d' < d, where we assume that d' is minimal (i.e., that there does not exist a $\mathbf{n} \in \mathbb{Z}^d$ such that $\mathfrak{S}(u^{\mathbf{n}}h)$ is contained in a subspace of lower dimension). Since α is mixing, Lemma 2.2 (2) implies that $d' \geq 2$.

Put $\Gamma = V \cap \mathbb{Z}^d \cong \mathbb{Z}^{d'}$ and choose a subgroup $\Gamma' \subset \mathbb{Z}^d$ with $\Gamma \cap \Gamma' = \{\mathbf{0}\}$ and $\Gamma + \Gamma' = \mathbb{Z}^d$. We identify Γ with $\mathbb{Z}^{d'}$, regard f as an element of $R_{d'}^{(p)}$, and apply Proposition 3.5 to the $\mathbb{Z}^{d'}$ -action $\alpha_{R_{d'}^{(p)}/(f)}$ on $X_{R_{d'}^{(p)}/(f)}$ to find, for every $\mathbf{m} \in \Gamma$ such that the restriction of $\alpha_{R_{d'}^{(p)}/(f)}$ to the group

$$\Gamma_{\mathbf{m}} = \{\mathbf{n} \in \Gamma \colon [\mathbf{n},\mathbf{m}] = 0\}$$

is expansive, a Weyl chamber W_2 of the $\mathbb{Z}^{d'}$ -action $\alpha_{R_{d'}^{(p)}/(f)}$ such that, for every nonzero $\mathbf{n} \in \mathbb{Z}^{d'}$ with $\mathbf{n}^* \in W_2$, the restriction of $\alpha_{R_{d'}^{(p)}/(f)}$ to $\Gamma_{\mathbf{n}}$ is again expansive and the homoclinic groups

$$\Delta_{(\alpha_{R_{d'}^{(p)}/(f)},\Gamma_{\mathbf{m}})}(X_{R_{d'}^{(p)}/(f)}),\Delta_{(\alpha_{R_{d'}^{(p)}/(f)},\Gamma_{\mathbf{n}})}(X_{R_{d'}^{(p)}/(f)})$$

have trivial intersection.

Since the restriction α^{Γ} of α to Γ is algebraically conjugate to the product action of Γ on $X \cong (X_{R_{d'}^{(p)}/(f)})^{\Gamma'}$, we obtain that the restrictions of α to the groups $\Gamma_{\mathbf{m}} + \Gamma'$ and $\Gamma_{\mathbf{n}} + \Gamma'$ are expansive, and that the homoclinic groups $\Delta_{(\alpha,\Gamma_{\mathbf{m}}+\Gamma')}(X)$ and $\Delta_{(\alpha,\Gamma_{\mathbf{n}}+\Gamma')}(X)$ have trivial intersection. It is easy to see that this implies the statement of the proposition in the case where $\mathfrak{C}(f)$ does not have an interior point (in fact, the open set $W \subset S_{d-1}$ can again be interpreted as a **Weyl chamber** of α).

4. Isomorphism rigidity

In this section we prove the following rigidity result for measurable factor maps between algebraic \mathbb{Z}^d -actions on zero-dimensional compact abelian groups.

THEOREM 4.1: Let d > 1, and let α and β be mixing algebraic \mathbb{Z}^d -actions on zero-dimensional compact abelian groups X and Y, respectively. Suppose that there exists a subgroup $\Gamma \subset \mathbb{Z}^d$ of of infinite index such that the restriction α^{Γ} of α to Γ is expansive and has completely positive entropy. Then every measurable factor map $\phi: (X, \alpha) \longrightarrow (Y, \beta)$ is λ_X -a.e. equal to an affine map.

Before turning to the proof of this result we mention a couple of corollaries which generalize the main result in [9] in different directions.

COROLLARY 4.2: Let d > 1, and let α and β be mixing algebraic \mathbb{Z}^d -actions on zero-dimensional compact abelian groups X and Y, respectively. Suppose that there exists a nonzero element $\mathbf{n} \in \mathbb{Z}^d$ such that the automorphism $\alpha^{\mathbf{n}}$ is expansive. Then every measurable factor map $\phi: (X, \alpha) \longrightarrow (Y, \beta)$ is λ_X -a.e. equal to an affine map.

Proof: Since every mixing (= ergodic) group automorphism has completely positive entropy, this is Theorem 4.1 with Γ of rank one.

COROLLARY 4.3: Let d>1, p a rational prime, and $\mathfrak{p},\mathfrak{q}\subset R_d^{(p)}$ nonzero prime ideals such that the \mathbb{Z}^d -actions $\alpha=\alpha_{R_d^{(p)}/\mathfrak{p}}$ and $\beta=\alpha_{R_d^{(p)}/\mathfrak{q}}$ on the compact zero dimensional groups $X=X_{R_d^{(p)}/\mathfrak{p}}$ and $Y=X_{R_d^{(p)}/\mathfrak{q}}$ in (2.10)–(2.11) are mixing. Then α and β are measurably conjugate if and only if they are algebraically conjugate, and hence if and only if $\mathfrak{p}=\mathfrak{q}$. Furthermore, every measurable conjugacy $\phi\colon (X,\alpha)\longrightarrow (Y,\beta)$ is λ_X -a.e. equal to an affine map.

Proof: The existence of a subgroup $\Gamma \subset \mathbb{Z}^d$ of infinite index with the properties required by Theorem 4.1 is proved in [6] (the rank of Γ is the maximal number of algebraically independent elements in the set $\{u^{\mathbf{n}} + \mathfrak{p} \colon \mathbf{n} \in \mathbb{Z}^d\} \subset R_d^{(p)}/\mathfrak{p}\}$. Let $\phi \colon (X,\alpha) \longrightarrow (Y,\beta)$ be a measurable conjugacy. By Theorem 4.1, there exist $y \in Y$ and a continuous homomorphism $\theta \colon X \longrightarrow Y$ such that $\phi(x) = y + \theta(x)$ for λ_X -a.e. $x \in X$. It is easy to verify that θ is an algebraic conjugacy of (X,α) and (Y,β) .

In order to see that algebraic conjugacy implies that $\mathfrak{p} = \mathfrak{q}$ we note that, for every $f \in R_d^{(p)}$, the maps $f(\alpha)$ and $f(\beta)$ in (2.4) are surjective if and only if $f \notin \mathfrak{p}$ (resp. $f \notin \mathfrak{q}$).

We begin the proof of Theorem 4.1 with a lemma.

LEMMA 4.4: For i=1,2,3, let α_i be a mixing algebraic \mathbb{Z}^d -action on a compact abelian group X_i , and let ϕ : $(X_1 \times X_2, \alpha_1 \times \alpha_2) \longrightarrow (X_3, \alpha_3)$ be a continuous factor map such that $\phi(x_1, x_2) = 0_{X_3}$ whenever $x_1 = 0_{X_1}$ or $x_2 = 0_{X_2}$. Suppose furthermore that there exist subgroups Γ_1, Γ_2 in \mathbb{Z}^d such that the homoclinic groups $\Delta_{(\alpha_i, \Gamma_i)}(X_i)$ are dense in X_i for i=1,2, and that $\Delta_{(\alpha_3, \Gamma_1)}(X_3) \cap \Delta_{(\alpha_3, \Gamma_2)}(X_3) = \{0_{X_3}\}$. Then $\phi(X_1 \times X_2) = \{0_{X_3}\}$.

Proof: Since ϕ is a continuous factor map,

$$\begin{split} \lim_{\substack{\mathbf{m} \to \infty \\ \mathbf{m} \in \Gamma_1}} \alpha_3^{\mathbf{m}} \phi(x_1, x_2) &= \lim_{\substack{\mathbf{m} \to \infty \\ \mathbf{m} \in \Gamma_1}} \phi(\alpha_1^{\mathbf{m}} x_1, \alpha_2^{\mathbf{m}} x_2) = 0_{X_3} \\ &= \lim_{\substack{\mathbf{n} \to \infty \\ \mathbf{n} \in \Gamma_2}} \alpha_3^{\mathbf{n}} \phi(x_1, x_2) = \lim_{\substack{\mathbf{n} \to \infty \\ \mathbf{n} \in \Gamma_2}} \phi(\alpha_1^{\mathbf{n}} x_1, \alpha_2^{\mathbf{n}} x_2) \end{split}$$

for every $x_i \in \Delta_{(\alpha_i,\Gamma_i)}(X_i)$, i=1,2. Hence

$$\phi(x_1, x_2) \in \Delta_{(\alpha_3, \Gamma_1)}(X_3) \cap \Delta_{(\alpha_3, \Gamma_2)}(X_3) = \{0_{X_3}\}.$$

As $\Delta_{(\alpha_i,\Gamma_i)}(X_i) \subset X_i$ is dense for i=1,2 and ϕ is continuous this implies our assertion.

Proof of Theorem 4.1: We assume without loss in generality that the group \mathbb{Z}^d/Γ is torsion-free and that $\Gamma \cong \mathbb{Z}^{d'}$ with d' < d. Choose a primitive³ element $\mathbf{n} \in \mathbb{Z}^d \setminus \Gamma$ and set $\Gamma' = \Gamma + \{k\mathbf{n}: k \in \mathbb{Z}\} \cong \mathbb{Z}^{d'+1}$. Since α is mixing, the same is true for $\alpha' = \alpha^{\Gamma'}$, and the expansiveness of α^{Γ} implies that of $\alpha^{\Gamma'}$. Furthermore, since α^{Γ} is expansive, the Γ -action α^{Γ} has finite entropy and hence $\alpha^{\Gamma'}$ has zero entropy. We restrict α and β to Γ' and assume that d = d' + 1, that α is an expansive and mixing \mathbb{Z}^d -action, and that $\Gamma \subset \mathbb{Z}^d$ is a subgroup of rank d-1 such that α^{Γ} is expansive and has completely positive entropy. Since the restriction to subgroups $\Gamma'' \subset \Gamma$ of finite index changes neither expansiveness nor completely positive entropy we shall assume for simplicity that

$$\Gamma = {\mathbf{n} = (n_1, \dots, n_d) \in \mathbb{Z}^d : n_d = 0} = \mathbb{Z}^{d-1}.$$

As the \mathbb{Z}^{d-1} -action α^{Γ} has finite and completely positive entropy, the same is true for β^{Γ} , and Lemma 2.2 shows that every prime ideal $\mathfrak{q} \subset R_{d-1}$ associated with the dual module $N' = \widehat{Y}$ of the \mathbb{Z}^{d-1} -action β^{Γ} is of the form $\mathfrak{q} = p(\mathfrak{q})$ for some rational prime $p(\mathfrak{q}) > 1$. The existence of the filtrations described in Lemma 2.3 guarantees that N' is Noetherian as a module over R_{d-1} and hence

³ A nonzero element $\mathbf{n} = (n_1, \dots, n_d) \in \mathbb{Z}^d$ is **primitive** if $\gcd(n_1, \dots, n_d) = 1$.

that β^{Γ} is expansive. It follows that β is expansive, that the dual module $N = \widehat{Y}$ of the \mathbb{Z}^d -action β is Noetherian, and that every prime ideal $\mathfrak{p} \subset R_d$ associated with N is of the form $\mathfrak{p} = (p, f) = pR_d + fR_d$ for some rational prime $p \geq 2$ and some Laurent polynomial $f \in R_d$ whose reduction $f_{/p}$ modulo p is nonzero (otherwise β would have positive entropy by Lemma 2.2).

We apply Lemma 2.3 and choose isomorphic R_d -modules $L\supseteq N\supseteq L'$ with the properties mentioned there. As L and L' are isomorphic, the restrictions to Γ of the \mathbb{Z}^d -actions $\alpha_L,\beta,\beta'=\alpha_{L'}$ all have the same entropy. The inclusion $L'\subset N$ induces a dual algebraic factor map $\psi\colon (Y,\beta)\longrightarrow (X_{L'},\beta')$, and the filtration of $L'\cong L$ described in Lemma 2.3 induces a filtration $Y_k=X_{L'}\supset\cdots\supset Y_0=\{0\}$ of Y by β' -invariant subgroups such that each $(Y_j/Y_{j-1},\beta_{Y_j/Y_{j-1}})$ is algebraically conjugate to $(X_{R_d^{(p)}/(f)},\alpha_{R_d^{(p)}/(f)})$ for some rational prime $p\ge 2$ and some nonzero element $f\in R_d^{(p)}$ such that $\alpha_{R_d^{(p)}/(f)}$ is mixing. For every $j=0,\ldots,k$ we denote by $\pi_j\colon Y_k\longrightarrow Y_k/Y_j$ the quotient map.

Suppose that $\phi: (X, \alpha) \longrightarrow (Y, \beta)$ is a measurable factor map. Lemma 2.4 allows us to assume that ϕ is continuous, and we set $\phi_j = \pi_j \circ \psi \circ \phi: X \longrightarrow Y_k/Y_j$ for $j = 0, \ldots, k-1$.

We set j = k-1, $Y'' = Y_k/Y_{k-1}$, and write $\beta'' = \beta'_{Y''}$ for the \mathbb{Z}^d -action induced by β' on Y''. Then the restriction β''^{Γ} of β'' to Γ is expansive, and Proposition 3.6 and Lemma 3.3 (1) allow us to find a nonzero element $\mathbf{n} \in \mathbb{Z}^d$ such that the restrictions α^{Γ_n} and β''^{Γ_n} of α and β'' to Γ_n are expansive, the homoclinic group $\Delta_{(\alpha,\Gamma_n)}(X)$ is dense⁴ in X, and the homoclinic groups $\Delta_{(\beta'',\Gamma)}(Y'')$ and $\Delta_{(\beta'',\Gamma_n)}(Y'')$ have trivial intersections. We write $\Phi: X \times X \longrightarrow Y''$ for the map

$$\Phi(x_1, x_2) = \phi_{k-1}(x_1 + x_2) - \phi_{k-1}(x_1) - \phi_{k-1}(x_2) + \phi_{k-1}(0_X)$$

and obtain from Lemma 4.4 that $\Phi \equiv 0_{Y''}$ or, equivalently, that

$$\psi \circ \phi(x_1 + x_2) - \psi \circ \phi(x_1) - \psi \circ \phi(x_2) + \psi \circ \phi(0_X) \in Y_{k-1}$$

for every $x_1, x_2 \in X$. By repeating this argument we obtain inductively that

$$\psi \circ \phi(x_1 + x_2) - \psi \circ \phi(x_1) - \psi \circ \phi(x_2) + \psi \circ \phi(0_X) \in Y_j$$

for every $j = k - 1, \dots, 0$, which implies that

$$\phi(x_1 + x_2) - \phi(x_1) - \phi(x_2) + \phi(0_X) \in \ker(\psi)$$

⁴ The density of the homoclinic group $\Delta_{(\alpha,\Gamma)}(X)$ in X is clear from Proposition 3.2, since α^{Γ} is expansive and has completely positive entropy.

for every $x_1, x_2 \in X$. From Lemma 2.3 we know that the Γ-action induced by β on $Y_k = X_{L'}$ has the same entropy as β^{Γ} , and hence that the restriction $\beta_{\ker(\psi)}^{\Gamma}$ of β^{Γ} to $\ker(\psi)$ has zero entropy. Since the map

$$(x_1, x_2) \mapsto \phi(x_1 + x_2) - \phi(x_1) - \phi(x_2) + \phi(0_X)$$

is a measurable factor map from $(X \times X, \alpha^{\Gamma} \times \alpha^{\Gamma})$ to $(\ker(\psi), \beta_{\ker(\psi)}^{\Gamma})$, and since the first of these Γ -actions has completely positive entropy by assumption and the second one zero entropy, it follows that

$$\phi(x_1 + x_2) - \phi(x_1) - \phi(x_2) + \phi(0_X) = 0_Y$$

for every $x_1, x_2 \in X$, i.e., that ϕ is affine.

The following examples show that Theorem 4.1 and Corollary 4.3 do not hold if any of the assumptions are dropped. Our first example implies that the surjectivity of ϕ is necessary in Corollary 4.3 (and hence in Theorem 4.1).

Example 4.5: Let d=3, p=2, and consider the polynomials $f_1, f_2 \in R_3^{(2)}$ defined by $f_1=1+u_1+u_2, f_2=1+u_1+u_2+u_1^2+u_1u_2+u_2^2+u_3$. Let $\mathfrak{p}=(f_1,f_2)\subset R_3^{(2)}$ denote the ideal generated by f_1 and f_2 , and let $\mathfrak{q}=(f_2)\subset R_3^{(2)}$ be the principal ideal generated by f_2 . It is easy to see that \mathfrak{p} and \mathfrak{q} are prime ideals. We define the shift-actions $\alpha_1=\alpha_{R_3^{(2)}/\mathfrak{p}}$ and $\alpha_2=\alpha_{R_3^{(2)}/\mathfrak{q}}$ on $X_1=X_{R_3^{(2)}/\mathfrak{p}}\subset F_2^{\mathbb{Z}^3}$ and $X_2=X_{R_3^{(2)}/\mathfrak{q}}\subset F_2^{\mathbb{Z}^3}$, respectively, by (2.10)–(2.11). From Lemma 2.2 it is clear that α_1 and α_2 are mixing and have zero entropy.

We write \star for the component-wise multiplication $(z\star z')_{\bf n}=z_{\bf n}z'_{\bf n}$ in $F_2^{\mathbb{Z}^3}$ and observe that

$$\sigma^{\mathbf{n}}(z \star z') = (\sigma^{\mathbf{n}}z) \star (\sigma^{\mathbf{n}}z')$$

for every $z, z' \in F_2^{\mathbb{Z}^3}$ and $\mathbf{n} \in \mathbb{Z}^3$ (cf. (2.8)). We claim that

(4.1)
$$x \star x' \in X_2$$
 for every $x, x' \in X_1$.

In order to verify this we define subsets $S_i \subset \mathbb{Z}^3, i = 0, \dots, 3$, by

$$\begin{split} S_0 &= \$(f_2), \\ S_1 &= \$(f_1), \\ S_2 &= \{(1,0,0), (1,1,0), (2,1,0)\} = \$(u_1f_1), \\ S_3 &= \{(0,1,0), (0,2,0), (1,1,0)\} = \$(u_2f_1), \end{split}$$

and consider the set Z of all $z \in F_2^{S_0}$ with $\sum_{\mathbf{n} \in S_i} z_{\mathbf{n}} = 0$ for i = 0, ..., 3. A calculation shows that, for every $z, z' \in Z$, the component-wise product $w = z \star z' \in F_2^{S_0}$ satisfies that $\sum_{\mathbf{n} \in S_0} w_{\mathbf{n}} = 0$. This implies (4.1).

Take a non-zero $\mathbf{m} \in \mathbb{Z}^3$ such that $\alpha_1^{\mathbf{m}} z = z$ for some non-zero $z \in X_1$ and define $\phi \colon X_1 \longrightarrow X_2$ by $\phi(x) = x \star \alpha_1^{\mathbf{m}} x$. Clearly ϕ is a \mathbb{Z}^3 -equivariant map from (X_1, α_1) to (X_2, α_2) . We choose $y \in X_1$ such that $z \star (\alpha_1^{\mathbf{m}} y - y) \neq 0_{X_2}$. Since $\phi(0_{X_1}) = 0_{X_2}$ and $\phi(z + y) - \phi(z) - \phi(y) = z \star (\alpha_1^{\mathbf{m}} y - y) \neq 0_{X_2}$, the map ϕ is not affine.

In the next example we construct a non-affine factor map $\psi: (X, \alpha) \longrightarrow (X', \alpha')$ between expansive and mixing zero-entropy algebraic \mathbb{Z}^3 -actions, where α' has an expansive \mathbb{Z}^2 -sub-action with completely positive entropy.

Example 4.6: We use the same notation as in the previous example. Let $\mathfrak{r}=\mathfrak{pq}=(f_1f_2,f_2^2)\subset R_3^{(2)}$ be the ideal generated by f_1f_2 and f_2^2 and let β denote the algebraic \mathbb{Z}^3 -action $\alpha_{R_3^{(2)}/\mathfrak{r}}$ on $Y=X_{R_3^{(2)}/\mathfrak{r}}\subset F_2^{\mathbb{Z}^3}$. From Lemma 2.2 it follows that the action (Y,β) is mixing and has zero entropy. We define continuous group homomorphisms $\theta_1\colon Y\longrightarrow X_1$ and $\theta_2\colon Y\longrightarrow X_2$ by

$$\theta_1(y) = f_2(\sigma)(y), \qquad \theta_2(y) = f_1(\sigma)(y).$$

It is easy to verify that for $i = 1, 2, \theta_i$: $(Y, \beta) \longrightarrow (X_i, \alpha_i)$ is an algebraic factor map. Let ψ : $(Y, \beta) \longrightarrow (X_2, \alpha_2)$ be the \mathbb{Z}^3 -equivariant continuous map defined by

$$\psi(x) = \theta_2(x) + \phi \circ \theta_1(x),$$

where $\phi \colon X_1 \longrightarrow X_2$ is as in the previous example. Since θ_1 is a surjective homomorphism and ϕ is non-affine, it follows that $\phi \circ \theta_1$ is non-affine, i.e., that ψ is a non-affine map. It is easy to see that the restriction of θ_2 to X_2 is a surjective map from X_2 to itself. Since $\theta_1(x) = 0$ for all $x \in X_2 \subset Y$, this shows that ψ is a non-affine factor map from (Y, β) to (X_2, α_2) (in fact, it can be shown that $\tau \circ \psi$ is non-affine for every surjective α_2 -equivariant group homomorphism $\tau \colon X_2 \longrightarrow X_2$).

Our final example shows that there exist measurably conjugate expansive and mixing zero-entropy algebraic \mathbb{Z}^3 -actions on non-isomorphic compact zero-dimensional abelian groups.

Example 4.7: Let (X_1, α_1) and (X_2, α_2) be as in Example 4.5, and let (X, α) denote the product action $(X_1, \alpha_1) \times (X_2, \alpha_2)$. Following [2] we define a zero-dimensional compact abelian group Y and an algebraic \mathbb{Z}^3 -action β on Y by setting $Y = X_1 \times X_2$ with composition

$$(x,y)\odot(x',y')=(x+x',x\star x'+y+y')$$

for every $(x, x'), (y, y') \in Y$, and by letting

$$\beta^{\mathbf{n}}(x,y) = (\alpha_1^{\mathbf{n}}x, \alpha_2^{\mathbf{n}}y)$$

for every $(x,y) \in Y$ and $\mathbf{n} \in \mathbb{Z}^3$. The 'identity' map $\phi: X \longrightarrow Y$, defined by

$$\phi(x,y) = (x,y)$$

for every $(x,y) \in X$, is obviously a topological conjugacy of (X,α) and (Y,β) with $\lambda_X \phi^{-1} = \lambda_Y$ (by Fubini's theorem). However, ϕ is not a group isomorphism. In fact, the groups X and Y are not isomorphic: since X is a subgroup $(F_2 \oplus F_2)^{\mathbb{Z}^3}$, every element in X has order 2, whereas $(x,0_{X_2}) \in Y$ and $(x,0_{X_2}) \odot (x,0_{X_2}) = (0_{X_2},x) \neq 0_Y$ for every nonzero $x \in X_1$.

References

- [1] N. Aoki, A simple proof of the Bernoullicity of ergodic automorphisms of compact abelian groups, Israel Journal of Mathematics 38 (1981), 189–198.
- [2] S. Bhattacharya, Zero entropy Z^d-actions which do not exhibit rigidity, Duke Mathematical Journal 116 (2003), 471–476.
- [3] S. Bhattacharya, Higher order mixing and rigidity of algebraic actions on compact abelian groups, Israel Journal of Mathematics, this volume.
- [4] M. Boyle and D. Lind, Expansive subdynamics, Transactions of the American Mathematical Society 349 (1997), 55–102.
- [5] M. Einsiedler, Isomorphism and measure rigidity for algebraic actions on zerodimensional groups, Preprint, 2002.
- [6] M. Einsiedler, D. Lind, R. Miles and T. B. Ward, Expansive subdynamics for algebraic \mathbf{Z}^d -actions, Ergodic Theory and Dynamical Systems **21** (2001), 1695–1729.
- [7] B. Kamiński, The theory of invariant partitions for \mathbb{Z}^d -actions, Bulletin de l'Académie Polonaise des Sciences Sér. Sci. Tech. **29** (1981), 349–362.
- [8] A. Katok, S. Katok and K. Schmidt, Rigidity of measurable structure for algebraic actions of higher-rank abelian groups, Commentarii Mathematici Helvetici, to appear.
- [9] B. Kitchens and K. Schmidt, Isomorphism rigidity of irreducible algebraic Z^d-actions, Inventiones Mathematicae 142 (2000), 559-577.
- [10] D. Lind and K. Schmidt, Homoclinic points of algebraic \mathbb{Z}^d -actions, Journal of the American Mathematical Society 12 (1999), 953–980.

- [11] D. J. Rudolph and K. Schmidt, Almost block independence and Bernoullicity of Z^d-actions by automorphisms of compact groups, Inventiones Mathematicae 120 (1995), 455–488.
- [12] K. Schmidt, Dynamical Systems of Algebraic Origin, Birkhäuser Verlag, Basel-Berlin-Boston, 1995.
- [13] K. Schmidt, The dynamics of algebraic Z^d-actions, in European Congress of Mathematics (Barcelona 2000), Vol. I (C. Casacuberta, R. M. Miró-Roig, J. Verdera and S. Xambó-Deascamps, eds.), Progress in Mathematics, Vol. 201, Birkhäuser Verlag, Basel-Berlin-Boston, 2001, pp. 543-553.